General Instructions:
i) This question paper consists of 38 questions divided into four sections A, B, C, D and E. All questions are compulsory.
ii) Section A consists of 18 M.C.Q and 02 assertion reason based questions carrying 1 mark each. Section B consists of 5 very short answer questions carrying 2 marks each. Section C consists of 6 short answer question carrying 3 marks each. Section D consists of 4 long answer questions carrying 5 marks each. Section E has 3 source based/case based questions carrying 4 marks each.
iii) There is no overall choice. However, an internal choice has been given in some questions.

SECTION - A

1. Set $A=\{0\}$, set $B=\{x: x>15$ and $x<5\}$, set $C=\{x: x-5=0\}$, set $D=\left\{x: x^{2}=25\right\}$ set $E=\left\{x\right.$: x is integral positive root of the equation $\left.x^{2}-2 x-15=0\right\}$. Which of the following is true:
a) $\quad A=D$
b) $\quad B=E$
c) $\quad \mathrm{C}=\mathrm{D}$
d) $\quad \mathrm{C}=\mathrm{E}$
2. If $U=\{1,2,3,4,5,6,7,8,9,10\}$ is a universal set and $P=\{1,2,5\}, Q=\{6,7\}$, then $P^{\prime} \cap Q$ is:
a) P
b) $\quad \mathrm{Q}$
c) $\quad Q^{\prime}$
d) $\quad P^{\prime}$
3. The number of subsets that can be formed for set $A=\varnothing$ is:
a) 0
b) 1
c) 2
d) 4
4. The range of $f(x)=x^{2}+2$ is
a) $[-2, \infty)$
b) $(-\infty, 2]$
c) $[2, \infty)$
d) $[1, \infty)$
5. The domain of the function $f(x)=\sqrt{x-1}+\sqrt{3-x}$ is:
a) $[1, \infty)$
b) $(-\infty, 3)$
c) $(1,3)$
d) $[1,3]$
6. If $f(x)=\frac{x-3}{x-1},(x \neq 1)$, then $f[f(x)]$ is equal to:
a) x
b) x^{2}
c) $\frac{1}{x}$
d) 0
7. The value of $\frac{\sin A+\sin 3 A}{\cos A+\cos 3 A}$ is equal to:
a) $\cot 2 A$
b) $\tan 2 A$
c) $\quad \cot 3 A$
d) $\tan 3 A$
8. The value of $4 \cos \frac{\pi}{6} \sec \frac{\pi}{6}-4 \cos \frac{5 \pi}{6} \cot \frac{\pi}{3}$ is equal to:
a) 1
b) 2
c) 6
d) $\quad-2$
9. If $\sin A=\frac{3}{5}, \cos B=\frac{-12}{13}$, where A and B both lie in second quadrant, then the value of $\sin (A+B)$ is:
a) $\frac{-28}{65}$
b) $\frac{28}{65}$
C) $\frac{-56}{65}$
d) $\frac{56}{65}$
10. If $4 x+3<6 x+7$ then the value of $x ; \forall x \in Z$ is:
a) $[-2, \infty]$
b) $\{-2,-1,0,1 \ldots .$.
c) $\{-1,0,1,2 \ldots \ldots\}$
d) $(-2, \infty)$
11. The solution set of $\frac{-2}{x+4}>0$ is:
a) $[-\infty, 4]$
b) $(-4, \infty)$
c) $(-4,4)$
d) $(-\alpha,-4)$
12. The marks scored by Rohit in two test were 65 and 70. If Rohit scored ' x ' marks in the third test to achieve an average of at least 65 marks, then which of the following is correct:
a) $x>65$
b) $\quad x<60$
c) $x=55$
d) $\quad x \geq 60$
13. The value of $\frac{1}{i^{99}}$ is:
a) i
b) $-i$
c) 1
d) -1
14. The value of $\sqrt{-25} \times \sqrt{-9}$ is
a) 15
b) $15 i$
c) -15
d) $-15 i$
15. The modulus of $\frac{(1+i)(1+\sqrt{3} i)}{1-i}$ is:
a) 3
b) 2
c) $2 \sqrt{2}$
d) 4
16. The geometric mean of $a^{3} b$ and $a b^{3}$ is:
a) $\frac{a b\left(a^{2}+b^{2}\right)}{2}$
b) $a^{3} b^{2}$
c) $\quad a^{2} b^{2}$
d) $a b$
17. Which term of G.P $\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2 \sqrt{2}} \ldots \ldots \ldots$ is $\frac{1}{512 \sqrt{2}}$:
a) $2^{\text {th }}$
b) $11^{\text {th }}$
c) $10^{\text {th }}$
d) $8^{\text {th }}$
18. In a G.P. the $3^{\text {rd }}$ term is 24 and $6^{\text {th }}$ term is 192 . Then its $10^{\text {th }}$ term is:
a) 3072
b) 3074
c) 2072
d) 2074

In questions 19 and 20, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer from the given choices.
19. Assertion(A): The collection of all natural numbers less than 100 is a set.

Reason (R) : A set is a well-defined collection of distinct objects.
a) Both A and R are true and R is correct explanation of A.
b) Both A and R are true but R is not a correct explanation of A.
c) $\quad A$ is true but R is false.
d) $\quad A$ is false but R is true.
20. Assertion (A): For $x= \pm 1$, the numbers $\frac{-2}{7}, x, \frac{-7}{2}$ are in G.P

Reason (R): Three numbers a, b, c are in G.P. if $b^{2}=a c$.
a) Both A and R are true and R is correct explanation of A.
b) Both A and R are true but R is not a correct explanation of A.
c) $\quad A$ is true but R is false.
d) $\quad A$ is false but R is true.

SECTION - B

21. Let $U=\{x: x \in N, x \leq 9\} ; A=\{x: x$ is even number, $0 \leq x<10\} ; B=\{2,3,5,7\}$. Write the set (AUB)'.
22. Let $f=\{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from Z to Z defined by $f(x)=(a x+b)$, for some integers a and b. Find a, b.
23. The minute hand of a watch is 1.5 cm long. How far does its tip move in 40 minutes?
(Use $\pi=3.14$)
24. Find two numbers whose A.M is 34 and G.M is 16 .
(OR)
Find the sum to n terms of the sequence $7,77,777,7777$, \qquad to n terms.
25. Solve the inequation: $-5 \leq \frac{2-3 x}{4} \leq 9$ and write the solution set.

SECTION - C

26. Prove that $(\cos \alpha+\cos \beta)^{2}+(\sin \alpha+\sin \beta)^{2}=4 \cos ^{2}\left(\frac{\alpha-\beta}{2}\right)$.
27. If $\tan A=\frac{m}{m-1}$ and $\tan B=\frac{1}{2 m-1}$. Prove that $A-B=\frac{\pi}{4}$.
(OR)
If $\sin x=-\frac{1}{2}, x$ lies in IV quadrant, find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$.
28. If $(x+i y)^{\frac{1}{3}}=(a+i b)$, prove that $\frac{x}{a}+\frac{y}{b}=4\left(a^{2}-b^{2}\right)$.
(OR)

Let $Z_{1}=2-i$ and $Z_{2}=-2+i$.
Find
(i) $\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{Z}_{1}}\right)$
(ii) $\quad \operatorname{Im}\left(\frac{1}{Z_{1} Z_{2}}\right)$
29. Let $f(x)$ and $g(x)$ be real valued functions defined by $f(x)=\sqrt{x+2}$ and $g(x)=\sqrt{4-x^{2}}$.

Then, find a function $\emptyset(x)=(f g)(x)$. Write the domain of $\emptyset(x)$.
(OR)
Let $A=\{1,2,3,5\}$ and $B=\{4,6,9\}$. Define a relation R from A to B by $R=\{(x, y)$: the difference between x and y is odd, $x \in A, y \in B\}$. Write the domain and range of R.
30. Find the real value of x and y for which the complex numbers $(x+i y)(2-3 i)$ and $4-i$ are conjugate of each other.
31. The length of a rectangle is five times its breadth. What is the minimum length of the rectangle so that the perimeter of rectangle is atleast 120 cm .

SECTION - D

32. Let S be the sum, P be the product and R be the sum of reciprocals of n terms of a G.P. prove that $P^{2} R^{n}=S^{n}$.

If $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }}$ and $\mathrm{r}^{\text {th }}$ terms of a G.P are a, b and c, respectively. Prove that $a^{q-r} b^{r-p} c^{p-q}=1$.
33. Prove that $\cos ^{4} \frac{\pi}{8}+\cos ^{4} \frac{3 \pi}{8}+\cos ^{4} \frac{5 \pi}{8}+\cos ^{4} \frac{7 \pi}{8}=\frac{3}{2}$.

Prove that $\frac{\cos 8 A \cos 5 A-\cos 12 A \cos 9 A}{\sin 8 A \cos 5 A+\cos 12 A \sin 9 A}=\tan 4 A$.
34. If α and β are different complex numbers with $|\beta|=1$, find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$.
35. Prove that: $\frac{\sec 8 x-1}{\sec 4 x-1}=\frac{\tan 8 x}{\tan 2 x}$.

SECTION - E

36. A mathematics teacher Mamta Sharma of class XI write the following sets on a black-board $\mathrm{U}=\{x: x=n, n \in N, n \leq 15\}, \mathrm{A}=\{1,3,5,7,9\}, \mathrm{B}=\{2,4,6,8\}$ and $\mathrm{C}=\{2,3,5,7,11\}$
Based on above information answer the following :
i) Find $(A \cup B) \cap(A \cap B)$
ii) Find ($A-B) \cup(B-A)$
iii) Verify the relationship $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

Draw the venn diagram from above information.
37. In a sequence every even term is 'a' times the term before it and every odd term is ' c^{\prime} 'times the term before it. The first term of the sequence is unity.
i) Write first five terms of the sequence.
ii) Write $7^{\text {th }}$ term of the sequence.
iii) Find the sum of $2 n$ terms of the sequence.
38. A company manufactures cassettes. Its cost price and selling price functions for the week are given by $\mathrm{C}(x)=300+\frac{3}{2} x$ and $\mathrm{S}(x)=2 x$ respectively, where x is the number of cassettes produced and sold per week.
i) Write the profit function $\mathrm{P}(x)$ for above transaction.
ii) How many cassettes must be sold in a week to realize a profit?

