Class 11 19-9-2023

MID TERM EXAMINATION - MATHEMATICS

Time: 3 hrs. Max. Marks: 80

General Instructions:

This question paper consists of 38 questions divided into four sections A, B, C, D and E. i) All questions are compulsory.

Section A consists of 18 M.C.O and 02 assertion reason based questions carrying 1 mark ii) onsists case

uestions.

	iii)	Section C cor of 4 long ans based question	nsists of wer que ons carr	6 short answer estions carrying ying 4 marks e	r questi 5 marl ach.	on carrying 3 n	narks ea n E has	g 2 marks each. ach. Section D consi 3 source based/cas given in some ques
				SEC	TION -	- A		
1.		x is integral po				= {x: x-5=0}, so -2x-15=0}. Whi C=D		{x: x²=25} set ne following is true: C=E
2.	If U = $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ is a universal set and P = $\{1, 2, 5\}$, Q = $\{6, 7\}$, then P' \cap Q is:							
	a)	P	b)	Q	c)	Q′	d)	P'
3.	The na	umber of subse	ets that b)	can be formed 1	for set c)	$A = \emptyset$ is:	d)	4
4.		ange of $f(x) = [-2, \infty)$		is (-∞, 2]	c)	[2,∞)	d)	[1,∞)
5.	The da	omain of the fu $[1, \infty)$	unction _.	$f(x) = \sqrt{x - 1} - (-\infty, 3)$	$+\sqrt{3}-$ c)	\overline{x} is: (1, 3)	d)	[1, 3]
6.	If $f(x)$	$=\frac{x-3}{x-1}, (x \neq 1)$), then	f[f(x)] is equa	l to:			
	a)	x	b)	x^2	c)	$\frac{1}{x}$	d)	0
7.	The value of $\frac{\sin A + \sin 3A}{\cos A + \cos 3A}$ is equal to:							
	a)		b)	tan 2 <i>A</i>	c)	cot3 A	d)	tan 3 <i>A</i>
8.		alue of $4\cos\frac{\pi}{6}$ s	$\sec\frac{\pi}{6} - 4$ b)	$4\cos\frac{5\pi}{6}\cot\frac{\pi}{3}$ is	equal t c)	o: 6	d)	-2
9.	If $\sin A = \frac{3}{5}$, $\cos B = \frac{-12}{13}$, where A and B both lie in second quadrant, then the value							
	of sin($(A + B)$ is: $\frac{-28}{65}$	b)	28 65	c)	<u>-56</u> 65	d)	<u>56</u> 65
10.	a)	+3 < 6x + 7 th $[-2, \infty]$ $\{-1, 0, 1, 2 \dots$		value of x ; $\forall x$	b)	{-2, -1, 0, 1 (-2, ∞)	}	
			_2					

The solution set of $\frac{-2}{x+4} > 0$ is: a) $[-\infty, 4]$ b) $(-4, \infty)$ c) (-4, 4) d) $(-\alpha, -4)$ 11.

12.	The marks scored by Rohit in two test were 65 and 70. If Rohit scored ' x ' marks in the third
	test to achieve an average of at least 65 marks, then which of the following is correct:

a)

x > 65 b) x < 60

c) x = 55 d) $x \ge 60$

The value of $\frac{1}{i^{99}}$ is: 13.

b)

c) 1 d) -1

14. The value of $\sqrt{-25} \times \sqrt{-9}$ is

a)

b) 15*i*

-15 c)

d) -15i

The modulus of $\frac{(1+i)(1+\sqrt{3}i)}{1-i}$ is: a) 3 b) 2 15.

a)

 $2\sqrt{2}$ c)

d) 4

16. The geometric mean of a^3b and ab^3 is:

> $\frac{ab(a^2+b^2)}{2}$ a)

c) a^2b^2

d) ab

Which term of G.P $\sqrt{2}$, $\frac{1}{\sqrt{2}}$, $\frac{1}{2\sqrt{2}}$ is $\frac{1}{512\sqrt{2}}$:
a) 2^{th} b) 11^{th} c) 17.

2072

8th d)

In a G.P. the 3rd term is 24 and 6th term is 192. Then its 10th term is: 18.

b) 3074

2074

In questions 19 and 20, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer from the given choices.

19. Assertion(A): The collection of all natural numbers less than 100 is a set.

A set is a well-defined collection of distinct objects.

- Both A and R are true and R is correct explanation of A. a)
- b) Both A and R are true but R is not a correct explanation of A.
- c) A is true but R is false.
- A is false but R is true.

Assertion (A): For $x = \pm 1$, the numbers $\frac{-2}{7}$, x, $\frac{-7}{2}$ are in G.P 20.

Reason (R): Three numbers a, b, c are in G.P. if $b^2 = ac$.

- Both A and R are true and R is correct explanation of A. a)
- b) Both A and R are true but R is not a correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.

SECTION - B

21. Let $U=\{x:x \in \mathbb{N}, x \le 9\}$; $A=\{x:x \text{ is even number}, 0 \le x < 10\}$; $B=\{2,3,5,7\}$. Write the set (AUB)'.

22. Let $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ be a function from Z to Z defined by f(x) = (ax + b), for some integers a and b. Find a, b.

23. The minute hand of a watch is 1.5 cm long. How far does its tip move in 40 minutes? (Use $\pi = 3.14$)

24. Find two numbers whose A.M is 34 and G.M is 16.

(OR)

Find the sum to n terms of the sequence 7, 77, 777, 7777, to n terms.

Solve the inequation: $-5 \le \frac{2-3x}{4} \le 9$ and write the solution set. 25.

SECTION - C

26. Prove that
$$(\cos \alpha + \cos \beta)^2 + (\sin \alpha + \sin \beta)^2 = 4\cos^2(\frac{\alpha - \beta}{2})$$
.

27. If
$$\tan A = \frac{m}{m-1}$$
 and $\tan B = \frac{1}{2m-1}$. Prove that $A - B = \frac{\pi}{4}$.

(OR)

If $\sin x = -\frac{1}{2}$, x lies in IV quadrant, find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$.

28. If
$$(x + iy)^{\frac{1}{3}} = (a + ib)$$
, prove that $\frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2)$.

(OR)

Let $Z_1 = 2 - i$ and $Z_2 = -2 + i$.

Find (i) $\text{Re}\left(\frac{z_1 Z_2}{\overline{Z_1}}\right)$ (ii) $\text{Im}\left(\frac{1}{z_1 Z_2}\right)$

Find (i)
$$\operatorname{Re}\left(\frac{z_1 Z_2}{\overline{Z_1}}\right)$$

(ii)
$$\operatorname{Im}\left(\frac{1}{Z_1Z_2}\right)$$

Let f(x) and g(x) be real valued functions defined by $f(x) = \sqrt{x+2}$ and $g(x) = \sqrt{4-x^2}$. 29. Then, find a function $\phi(x) = (fg)(x)$. Write the domain of $\phi(x)$. (OR)

Let $A=\{1,2,3,5\}$ and $B=\{4,6,9\}$. Define a relation R from A to B by $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd, } x \in A, y \in B\}$. Write the domain and range of R.

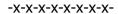
- 30. Find the real value of x and y for which the complex numbers (x + iy)(2 - 3i) and 4 - i are conjugate of each other.
- 31. The length of a rectangle is five times its breadth. What is the minimum length of the rectangle so that the perimeter of rectangle is atleast 120cm.

SECTION - D

32. Let S be the sum, P be the product and R be the sum of reciprocals of n terms of a G.P. prove that $P^2R^n = S^n$.

If pth, qth and rth terms of a G.P are a, b and c, respectively. Prove that $a^{q-r}b^{r-p}c^{p-q}=1$.

Prove that $\cos^4 \frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4 \frac{5\pi}{8} + \cos^4 \frac{7\pi}{8} = \frac{3}{2}$. 33. Prove that $\frac{\cos 8A \cos 5A - \cos 12A \cos 9A}{\sin 8A \cos 5A + \cos 12A \sin 9A} = \tan 4A.$


- If α and β are different complex numbers with $|\beta|=1$, find $\left|\frac{\beta-\alpha}{1-\alpha\beta}\right|$. 34.
- Prove that: $\frac{\sec 8x 1}{\sec 4x 1} = \frac{\tan 8x}{\tan 2x}$ 35.

SECTION - E

- A mathematics teacher Mamta Sharma of class XI write the following sets on a black-board 36. $U = \{x: x = n, n \in \mathbb{N}, n \le 15\}, A = \{1, 3, 5, 7, 9\}, B = \{2, 4, 6, 8\} \text{ and } C = \{2, 3, 5, 7, 11\}$ Based on above information answer the following:
 - i) Find $(A \cup B) \cap (A \cap B)$
 - Find (A-B)∪(B-A) ii)
 - Verify the relationship $(A \cup B)' = A' \cap B'$ iii) (OR)

Draw the venn diagram from above information.

- 37. In a sequence every even term is 'a' times the term before it and every odd term is 'c' times the term before it. The first term of the sequence is unity.
 - i) Write first five terms of the sequence.
 - ii) Write 7th term of the sequence.
 - iii) Find the sum of 2n terms of the sequence.
- 38. A company manufactures cassettes. Its cost price and selling price functions for the week are given by $C(x) = 300 + \frac{3}{2}x$ and S(x) = 2x respectively, where x is the number of cassettes produced and sold per week.
 - i) Write the profit function P(x) for above transaction.
 - ii) How many cassettes must be sold in a week to realize a profit?

